

CLEANER AIR FOR SCOTLAND – NATIONAL MODELLING FRAMEWORK

Consideration of Carbon Dioxide emissions within an LEZ scheme: Glasgow

The main objective of a Low Emission Zone (LEZ) is to improve air quality to meet current statutory air quality standards and objectives. Access to the LEZ is restricted on the basis of the vehicle Euro classification, which is designed to control emissions of Nitrogen Oxides (NO_x), Total Hydrocarbons, Non-methyl Hydrocarbons, Carbon Monoxide and Particulate Matter (PM) <u>See EU Commission Regulation</u>.

Carbon Dioxide (CO₂) emissions are not currently controlled by the Euro classification, although CO₂ emissions will be included in upcoming Euro 7 standards which are expected to come into force in 2025. The Transport (Scotland) Act (2019) includes a statutory obligation to consider the contributions made towards greenhouse gas emissions.

CO₂ emissions are linked to the quantity of fuel burnt by a vehicle and therefore reductions in emissions are mostly linked to improved fuel efficiency. No vehicles currently include CO₂ emission abatement, and therefore no significant changes in CO₂ emissions are expected as a direct result of LEZ emission restrictions.

Lower CO₂ emissions could be achieved by reducing the number of vehicle journeys made by petrol/diesel vehicles and increasing the proportion of journeys made using alternative technologies (e.g. electric and hydrogen vehicles) and active travel. This move to zero carbon emissions could be achieved by actions set out in CAFS2. Many of these initiatives are also being progressed by Glasgow City Council through the Glasgow Transport Strategy, the City Centre Transformation Plan, the Connectivity Commision outcomes and the city centre car free zone.

OFFICIAL

Euro class emissions standards are outlined in Tables 1, 2 and 3. CO₂ is not included in this framework.

g/km	Diese	el Car	Petrol Car		
	NOx	PM	NOx	PM	
Euro 1	-	0.14	-	-	
Euro 2	-	0.08	-	-	
Euro 3	0.5	0.05	0.15	-	
Euro 4	0.25	0.025	0.08	0.005	
Euro 5 (incl 5a and 5b)	0.18	0.0045	0.06	0.005 (5a) 0.0045 (5b)	
Euro 6 (incl 6b, 6c, 6d-TEMP and 6d)	0.08	0.0045	0.06	0.0045	

Table 1: Car Emission Standards (NO_x and PM) for different Euro Classes

Table 2: LGV Emission Standards (NOx and PM) for different Euro Classes

g/km	<13	05kg	1305-1760kg		1760-3500kg	
	NOx	PM	NOx	РМ	NOx	PM
Euro 1	-	0.14	-	0.19	-	0.25
Euro 2	-	0.08	-	0.12	-	0.17
Euro 3	0.5	0.05	0.65	0.07	0.78	0.10
Euro 4	0.25	0.025	0.33	0.04	0.39	0.06
Euro 5 (incl 5a and 5b)	0.18	0.0045	0.235	0.005 (5a) 0.0045 (5b)	0.28	0.005 (5a) 0.0045 (5b)
Euro 6 (incl 6b, 6c, 6d-TEMP and 6d)	0.08	0.0045	0.105	0.0045	0.125	0.0045

Table 3: Bus and HGV Emission Standards (NO_x and PM) for different Euro Classes. Note that Bus and HGV emissions standards are defined as g/kWh)

	Vehicle Type	NO _x (g/kWh)	PM (g/kWh)			
Euro I	All	8	0.36			
Euro II	All	7	0.15			
Euro III	EEV	2	0.02			
Euro III	Non EEV	5	0.1			
Euro IV	All	3.5	0.02			
Euro V	All	2	0.02			
Euro VI	All	0.4	0.01			
Note: EEV is Environmentally Enhanced Vehicle						

The Emissions Factor Toolkit (EfT) is published by Defra and the Devolved Administrations so that emission factors can be calculated for different vehicle speeds. These have been extracted from EfT v10.1 for vehicles travelling at an average speed of 20km/h, to show the effect of the Euro classification on emissions of NO_x and CO₂.

Figure 1 confirms that between Euro classes 5 and 6d there is a reduction in NO_x emissions from diesel cars of around 70%, compared with a reduction in CO₂ emissions of 8%. From petrol cars there is a small increase in NO_x emissions between Euro classes 5 and 6d of 13%, compared with an 8% reduction of CO₂. From diesel LGVs there is a reduction in NO_x emissions of around 90% between Euro classes 5 and 6, whereas CO₂ emissions remain unchanged.

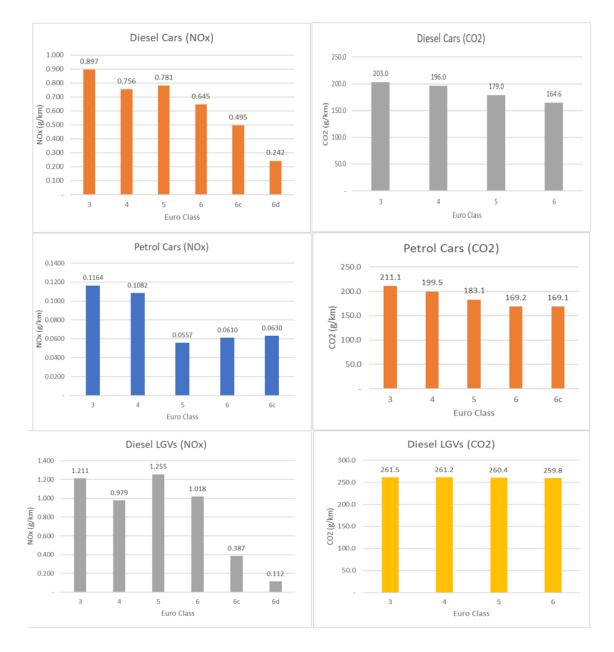


Figure 1: NOx and CO2 emission factors for Cars and LGV's

Figure 2 shows comparable data for heavy duty vehicles. For buses, rigid HGVs and articulated HGVs there is a reduction in NO_x emissions between Euro classes 5 and 6 of between 85-90%. CO₂ emissions remain unchanged.

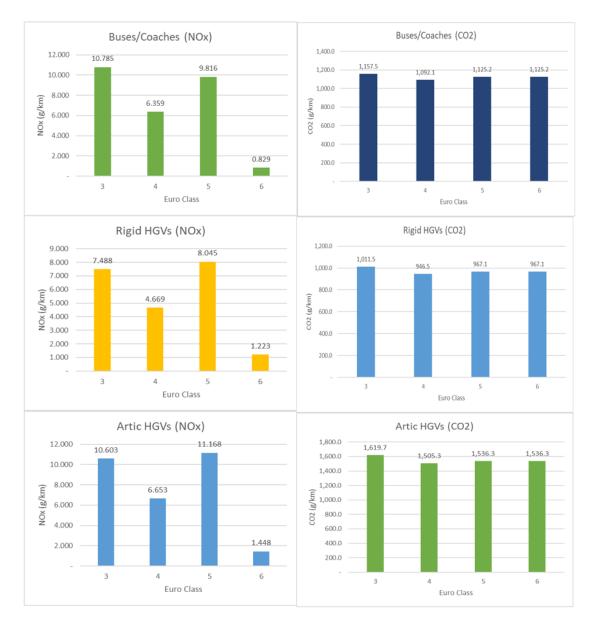


Figure 2: NOx and CO2 emission factors for Buses and HGV's

Analysis for Glasgow

Emissions of CO₂ have been calculated on the roads coloured in blue in Figure 3 for the Reference and LEZ scenarios. The methodology used to calculate emissions has been consistent with that used to calculate emissions of NO_x and PM in previous LEZ analyses and the National Modelling Framework (NMF). This includes the assumption that all buses and taxis in the LEZ scenario will be compliant.

Emission calculations were made in <u>EMIT</u> using emission factors from NAEI (2014). Emission factors from EfT are not currently available in EMIT.

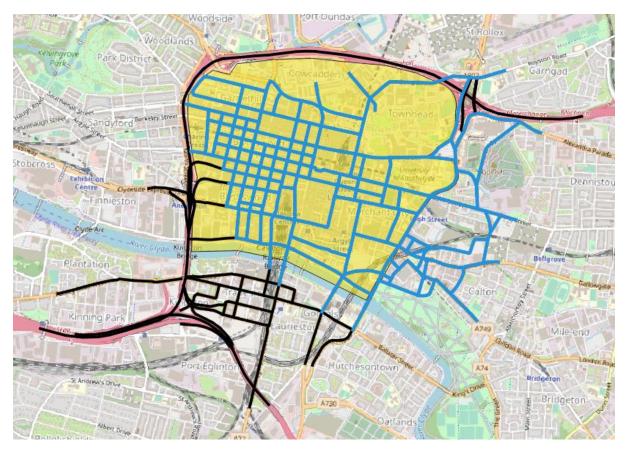


Figure 3: The Glasgow model road network. The predicted changes in CO₂ emissions have been calculated for the roads coloured in blue.

OFFICIAL

Figure 4 shows total CO_2 emissions from all roads coloured in blue (Figure 1) for Reference and LEZ scenarios. This shows that there are only negligible changes, with a total reduction of 300 tonnes of CO_2 following implementation, corresponding to a reduction of less than 1%.

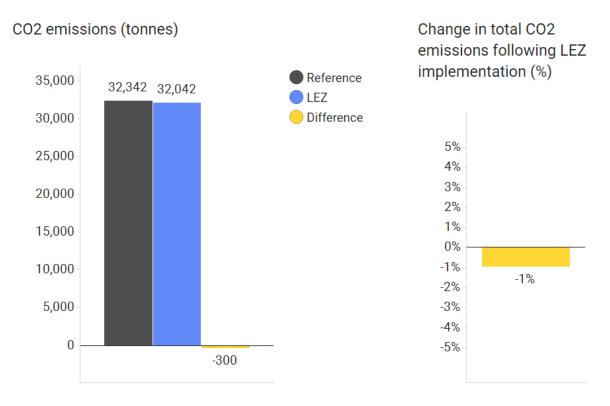


Figure 4: Total CO₂ emitted (tonnes) for the Reference and LEZ scenarios.

 CO_2 emissions in Figure 5 have been split between roads inside, and outside, the LEZ boundary. This shows a reduction in emissions of around 1% inside the boundary and an increase of <1% outside the boundary. This confirms that the net effect on CO_2 emissions of implementing the LEZ is negligible.

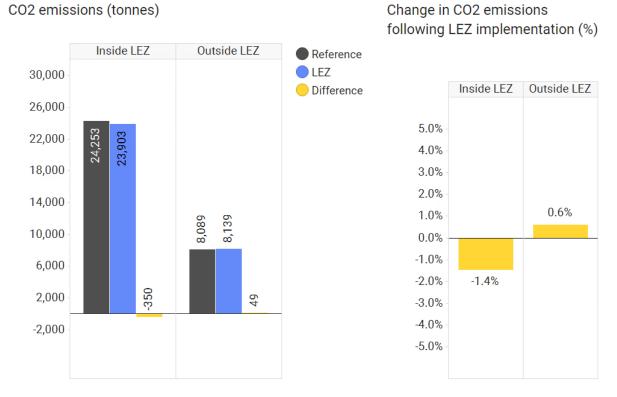


Figure 5: Total CO₂ emitted (tonnes) for the Reference and LEZ scenarios, on roads inside and outside the LEZ.

Summary of CO₂ Emissions

Access to the LEZ is restricted on the basis of vehicle Euro classifications, which do not include controls on emissions of CO₂. The Glasgow NMF model has been used to compare emissions of CO₂ before and after implementation of the LEZ. This has confirmed that there are negligible changes, corresponding to an overall reduction in CO₂ emissions of less than 1%.

OFFICIAL